Los puntos notables de un triángulo son:
• Circuncentro
• Incentro
• Baricentro
• Ortocentro
Circuncentro
Según se vio en la lección anterior, cualquier punto de la mediatriz de un lado de un triángulo equidista de los vértices que definen dicho lado. Luego si llamamos O al punto de intersección de las mediatrices de los lados AB y BC , por la propiedad anterior, el punto O equidista de los vértices A y B (por estar en la mediatriz de AB) y de los vértices B y C (por estar en la mediatriz de BC). Luego equidista de A , B y C .
Al equidistar de los tres vértices del triángulo, en particular, equidista de A y C, lo que demuestra que también estará en la mediatriz del lado AC y, además, será el centro de una circunferencia que pasa por los tres vértices del triángulo.
Incentro
Según se vio en la lección anterior, cualquier punto de la bisectriz de un ángulo de un triángulo equidista de los lados que definen dicho ángulo. Luego si llamamos I al punto de intersección de las bisectrices de los ángulos A y B, por la propiedad anterior, el punto I equidista de los lados AB y AC (por estar en la bisectriz de A ) y de los lados AB y BC (por estar en la bisectriz de B). Luego equidista de los lados AB , BC y CA..
Al equidistar de los tres lados del triángulo, en particular, equidista de CA y CB, lo que demuestra que también estará en la bisectriz del ángulo C y, además, será el centro de una circunferencia que es tangente a los tres lados del triángulo.
Baricentro
Las tres medianas de un triángulo, al igual que ocurría con las mediatrices y bisectrices, se cortan en un ÚNICO punto, que llamaremos BARICENTRO.
Ortocentro
Consideremos un triángulo de vértices A', B' y C'. Ya demostramos que las mediatrices de dicho triángulo se cortaban en un único punto, llamado circuncentro.
nombres de los angulos paralelos
Dos rectas que se cortan decimos que son secantes. Al cortarse determinan 4 ángulos, como puedes ver en la figura.
Pero esos ángulos están relacionados entre sí, de modo que si conociéramos cuánto mide uno de ellos, podríamos determinar inmediatamente los otros tres.
Cuando dos rectas paralelas son cortadas por otra recta, a la que llamaremos transversal se forman 8 ángulos, como puedes ver en la figura.
Pero esos ocho ángulos también guardan una estrecha relación entre sí, de modo que, como en el caso anterior, en cuanto conocemos uno de ellos podemos averiguar lo que valen los demás.
No hay comentarios:
Publicar un comentario